3.23.12 \(\int (1-2 x)^{3/2} (2+3 x) (3+5 x)^{5/2} \, dx\)

Optimal. Leaf size=160 \[ -\frac {1}{20} (1-2 x)^{5/2} (5 x+3)^{7/2}-\frac {17}{80} (1-2 x)^{5/2} (5 x+3)^{5/2}-\frac {187}{256} (1-2 x)^{5/2} (5 x+3)^{3/2}-\frac {2057 (1-2 x)^{5/2} \sqrt {5 x+3}}{1024}+\frac {22627 (1-2 x)^{3/2} \sqrt {5 x+3}}{20480}+\frac {746691 \sqrt {1-2 x} \sqrt {5 x+3}}{204800}+\frac {8213601 \sin ^{-1}\left (\sqrt {\frac {2}{11}} \sqrt {5 x+3}\right )}{204800 \sqrt {10}} \]

________________________________________________________________________________________

Rubi [A]  time = 0.05, antiderivative size = 160, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 4, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {80, 50, 54, 216} \begin {gather*} -\frac {1}{20} (1-2 x)^{5/2} (5 x+3)^{7/2}-\frac {17}{80} (1-2 x)^{5/2} (5 x+3)^{5/2}-\frac {187}{256} (1-2 x)^{5/2} (5 x+3)^{3/2}-\frac {2057 (1-2 x)^{5/2} \sqrt {5 x+3}}{1024}+\frac {22627 (1-2 x)^{3/2} \sqrt {5 x+3}}{20480}+\frac {746691 \sqrt {1-2 x} \sqrt {5 x+3}}{204800}+\frac {8213601 \sin ^{-1}\left (\sqrt {\frac {2}{11}} \sqrt {5 x+3}\right )}{204800 \sqrt {10}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(1 - 2*x)^(3/2)*(2 + 3*x)*(3 + 5*x)^(5/2),x]

[Out]

(746691*Sqrt[1 - 2*x]*Sqrt[3 + 5*x])/204800 + (22627*(1 - 2*x)^(3/2)*Sqrt[3 + 5*x])/20480 - (2057*(1 - 2*x)^(5
/2)*Sqrt[3 + 5*x])/1024 - (187*(1 - 2*x)^(5/2)*(3 + 5*x)^(3/2))/256 - (17*(1 - 2*x)^(5/2)*(3 + 5*x)^(5/2))/80
- ((1 - 2*x)^(5/2)*(3 + 5*x)^(7/2))/20 + (8213601*ArcSin[Sqrt[2/11]*Sqrt[3 + 5*x]])/(204800*Sqrt[10])

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 54

Int[1/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_.) + (d_.)*(x_)]), x_Symbol] :> Dist[2/Sqrt[b], Subst[Int[1/Sqrt[b*c -
 a*d + d*x^2], x], x, Sqrt[a + b*x]], x] /; FreeQ[{a, b, c, d}, x] && GtQ[b*c - a*d, 0] && GtQ[b, 0]

Rule 80

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(c + d*x)
^(n + 1)*(e + f*x)^(p + 1))/(d*f*(n + p + 2)), x] + Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p + 1)))/(
d*f*(n + p + 2)), Int[(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && NeQ[n + p + 2,
0]

Rule 216

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[(Rt[-b, 2]*x)/Sqrt[a]]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]

Rubi steps

\begin {align*} \int (1-2 x)^{3/2} (2+3 x) (3+5 x)^{5/2} \, dx &=-\frac {1}{20} (1-2 x)^{5/2} (3+5 x)^{7/2}+\frac {17}{8} \int (1-2 x)^{3/2} (3+5 x)^{5/2} \, dx\\ &=-\frac {17}{80} (1-2 x)^{5/2} (3+5 x)^{5/2}-\frac {1}{20} (1-2 x)^{5/2} (3+5 x)^{7/2}+\frac {187}{32} \int (1-2 x)^{3/2} (3+5 x)^{3/2} \, dx\\ &=-\frac {187}{256} (1-2 x)^{5/2} (3+5 x)^{3/2}-\frac {17}{80} (1-2 x)^{5/2} (3+5 x)^{5/2}-\frac {1}{20} (1-2 x)^{5/2} (3+5 x)^{7/2}+\frac {6171}{512} \int (1-2 x)^{3/2} \sqrt {3+5 x} \, dx\\ &=-\frac {2057 (1-2 x)^{5/2} \sqrt {3+5 x}}{1024}-\frac {187}{256} (1-2 x)^{5/2} (3+5 x)^{3/2}-\frac {17}{80} (1-2 x)^{5/2} (3+5 x)^{5/2}-\frac {1}{20} (1-2 x)^{5/2} (3+5 x)^{7/2}+\frac {22627 \int \frac {(1-2 x)^{3/2}}{\sqrt {3+5 x}} \, dx}{2048}\\ &=\frac {22627 (1-2 x)^{3/2} \sqrt {3+5 x}}{20480}-\frac {2057 (1-2 x)^{5/2} \sqrt {3+5 x}}{1024}-\frac {187}{256} (1-2 x)^{5/2} (3+5 x)^{3/2}-\frac {17}{80} (1-2 x)^{5/2} (3+5 x)^{5/2}-\frac {1}{20} (1-2 x)^{5/2} (3+5 x)^{7/2}+\frac {746691 \int \frac {\sqrt {1-2 x}}{\sqrt {3+5 x}} \, dx}{40960}\\ &=\frac {746691 \sqrt {1-2 x} \sqrt {3+5 x}}{204800}+\frac {22627 (1-2 x)^{3/2} \sqrt {3+5 x}}{20480}-\frac {2057 (1-2 x)^{5/2} \sqrt {3+5 x}}{1024}-\frac {187}{256} (1-2 x)^{5/2} (3+5 x)^{3/2}-\frac {17}{80} (1-2 x)^{5/2} (3+5 x)^{5/2}-\frac {1}{20} (1-2 x)^{5/2} (3+5 x)^{7/2}+\frac {8213601 \int \frac {1}{\sqrt {1-2 x} \sqrt {3+5 x}} \, dx}{409600}\\ &=\frac {746691 \sqrt {1-2 x} \sqrt {3+5 x}}{204800}+\frac {22627 (1-2 x)^{3/2} \sqrt {3+5 x}}{20480}-\frac {2057 (1-2 x)^{5/2} \sqrt {3+5 x}}{1024}-\frac {187}{256} (1-2 x)^{5/2} (3+5 x)^{3/2}-\frac {17}{80} (1-2 x)^{5/2} (3+5 x)^{5/2}-\frac {1}{20} (1-2 x)^{5/2} (3+5 x)^{7/2}+\frac {8213601 \operatorname {Subst}\left (\int \frac {1}{\sqrt {11-2 x^2}} \, dx,x,\sqrt {3+5 x}\right )}{204800 \sqrt {5}}\\ &=\frac {746691 \sqrt {1-2 x} \sqrt {3+5 x}}{204800}+\frac {22627 (1-2 x)^{3/2} \sqrt {3+5 x}}{20480}-\frac {2057 (1-2 x)^{5/2} \sqrt {3+5 x}}{1024}-\frac {187}{256} (1-2 x)^{5/2} (3+5 x)^{3/2}-\frac {17}{80} (1-2 x)^{5/2} (3+5 x)^{5/2}-\frac {1}{20} (1-2 x)^{5/2} (3+5 x)^{7/2}+\frac {8213601 \sin ^{-1}\left (\sqrt {\frac {2}{11}} \sqrt {3+5 x}\right )}{204800 \sqrt {10}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.07, size = 84, normalized size = 0.52 \begin {gather*} \frac {10 \sqrt {5 x+3} \left (10240000 x^6+11776000 x^5-5536000 x^4-9933120 x^3-211240 x^2+3335698 x-555399\right )+8213601 \sqrt {20 x-10} \sinh ^{-1}\left (\sqrt {\frac {5}{11}} \sqrt {2 x-1}\right )}{2048000 \sqrt {1-2 x}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(1 - 2*x)^(3/2)*(2 + 3*x)*(3 + 5*x)^(5/2),x]

[Out]

(10*Sqrt[3 + 5*x]*(-555399 + 3335698*x - 211240*x^2 - 9933120*x^3 - 5536000*x^4 + 11776000*x^5 + 10240000*x^6)
 + 8213601*Sqrt[-10 + 20*x]*ArcSinh[Sqrt[5/11]*Sqrt[-1 + 2*x]])/(2048000*Sqrt[1 - 2*x])

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.25, size = 157, normalized size = 0.98 \begin {gather*} -\frac {161051 \sqrt {1-2 x} \left (\frac {159375 (1-2 x)^5}{(5 x+3)^5}+\frac {361250 (1-2 x)^4}{(5 x+3)^4}+\frac {336600 (1-2 x)^3}{(5 x+3)^3}+\frac {152080 (1-2 x)^2}{(5 x+3)^2}-\frac {23120 (1-2 x)}{5 x+3}-1632\right )}{204800 \sqrt {5 x+3} \left (\frac {5 (1-2 x)}{5 x+3}+2\right )^6}-\frac {8213601 \tan ^{-1}\left (\frac {\sqrt {\frac {5}{2}} \sqrt {1-2 x}}{\sqrt {5 x+3}}\right )}{204800 \sqrt {10}} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[(1 - 2*x)^(3/2)*(2 + 3*x)*(3 + 5*x)^(5/2),x]

[Out]

(-161051*Sqrt[1 - 2*x]*(-1632 + (159375*(1 - 2*x)^5)/(3 + 5*x)^5 + (361250*(1 - 2*x)^4)/(3 + 5*x)^4 + (336600*
(1 - 2*x)^3)/(3 + 5*x)^3 + (152080*(1 - 2*x)^2)/(3 + 5*x)^2 - (23120*(1 - 2*x))/(3 + 5*x)))/(204800*Sqrt[3 + 5
*x]*(2 + (5*(1 - 2*x))/(3 + 5*x))^6) - (8213601*ArcTan[(Sqrt[5/2]*Sqrt[1 - 2*x])/Sqrt[3 + 5*x]])/(204800*Sqrt[
10])

________________________________________________________________________________________

fricas [A]  time = 1.36, size = 82, normalized size = 0.51 \begin {gather*} -\frac {1}{204800} \, {\left (5120000 \, x^{5} + 8448000 \, x^{4} + 1456000 \, x^{3} - 4238560 \, x^{2} - 2224900 \, x + 555399\right )} \sqrt {5 \, x + 3} \sqrt {-2 \, x + 1} - \frac {8213601}{4096000} \, \sqrt {10} \arctan \left (\frac {\sqrt {10} {\left (20 \, x + 1\right )} \sqrt {5 \, x + 3} \sqrt {-2 \, x + 1}}{20 \, {\left (10 \, x^{2} + x - 3\right )}}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(3/2)*(2+3*x)*(3+5*x)^(5/2),x, algorithm="fricas")

[Out]

-1/204800*(5120000*x^5 + 8448000*x^4 + 1456000*x^3 - 4238560*x^2 - 2224900*x + 555399)*sqrt(5*x + 3)*sqrt(-2*x
 + 1) - 8213601/4096000*sqrt(10)*arctan(1/20*sqrt(10)*(20*x + 1)*sqrt(5*x + 3)*sqrt(-2*x + 1)/(10*x^2 + x - 3)
)

________________________________________________________________________________________

giac [B]  time = 1.43, size = 356, normalized size = 2.22 \begin {gather*} -\frac {1}{51200000} \, \sqrt {5} {\left (2 \, {\left (4 \, {\left (8 \, {\left (4 \, {\left (16 \, {\left (100 \, x - 311\right )} {\left (5 \, x + 3\right )} + 46071\right )} {\left (5 \, x + 3\right )} - 775911\right )} {\left (5 \, x + 3\right )} + 15385695\right )} {\left (5 \, x + 3\right )} - 99422145\right )} \sqrt {5 \, x + 3} \sqrt {-10 \, x + 5} - 220189365 \, \sqrt {2} \arcsin \left (\frac {1}{11} \, \sqrt {22} \sqrt {5 \, x + 3}\right )\right )} - \frac {59}{38400000} \, \sqrt {5} {\left (2 \, {\left (4 \, {\left (8 \, {\left (12 \, {\left (80 \, x - 203\right )} {\left (5 \, x + 3\right )} + 19073\right )} {\left (5 \, x + 3\right )} - 506185\right )} {\left (5 \, x + 3\right )} + 4031895\right )} \sqrt {5 \, x + 3} \sqrt {-10 \, x + 5} + 10392195 \, \sqrt {2} \arcsin \left (\frac {1}{11} \, \sqrt {22} \sqrt {5 \, x + 3}\right )\right )} - \frac {157}{1920000} \, \sqrt {5} {\left (2 \, {\left (4 \, {\left (8 \, {\left (60 \, x - 119\right )} {\left (5 \, x + 3\right )} + 6163\right )} {\left (5 \, x + 3\right )} - 66189\right )} \sqrt {5 \, x + 3} \sqrt {-10 \, x + 5} - 184305 \, \sqrt {2} \arcsin \left (\frac {1}{11} \, \sqrt {22} \sqrt {5 \, x + 3}\right )\right )} + \frac {51}{40000} \, \sqrt {5} {\left (2 \, {\left (4 \, {\left (40 \, x - 59\right )} {\left (5 \, x + 3\right )} + 1293\right )} \sqrt {5 \, x + 3} \sqrt {-10 \, x + 5} + 4785 \, \sqrt {2} \arcsin \left (\frac {1}{11} \, \sqrt {22} \sqrt {5 \, x + 3}\right )\right )} + \frac {243}{2000} \, \sqrt {5} {\left (2 \, {\left (20 \, x - 23\right )} \sqrt {5 \, x + 3} \sqrt {-10 \, x + 5} - 143 \, \sqrt {2} \arcsin \left (\frac {1}{11} \, \sqrt {22} \sqrt {5 \, x + 3}\right )\right )} + \frac {27}{25} \, \sqrt {5} {\left (11 \, \sqrt {2} \arcsin \left (\frac {1}{11} \, \sqrt {22} \sqrt {5 \, x + 3}\right ) + 2 \, \sqrt {5 \, x + 3} \sqrt {-10 \, x + 5}\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(3/2)*(2+3*x)*(3+5*x)^(5/2),x, algorithm="giac")

[Out]

-1/51200000*sqrt(5)*(2*(4*(8*(4*(16*(100*x - 311)*(5*x + 3) + 46071)*(5*x + 3) - 775911)*(5*x + 3) + 15385695)
*(5*x + 3) - 99422145)*sqrt(5*x + 3)*sqrt(-10*x + 5) - 220189365*sqrt(2)*arcsin(1/11*sqrt(22)*sqrt(5*x + 3)))
- 59/38400000*sqrt(5)*(2*(4*(8*(12*(80*x - 203)*(5*x + 3) + 19073)*(5*x + 3) - 506185)*(5*x + 3) + 4031895)*sq
rt(5*x + 3)*sqrt(-10*x + 5) + 10392195*sqrt(2)*arcsin(1/11*sqrt(22)*sqrt(5*x + 3))) - 157/1920000*sqrt(5)*(2*(
4*(8*(60*x - 119)*(5*x + 3) + 6163)*(5*x + 3) - 66189)*sqrt(5*x + 3)*sqrt(-10*x + 5) - 184305*sqrt(2)*arcsin(1
/11*sqrt(22)*sqrt(5*x + 3))) + 51/40000*sqrt(5)*(2*(4*(40*x - 59)*(5*x + 3) + 1293)*sqrt(5*x + 3)*sqrt(-10*x +
 5) + 4785*sqrt(2)*arcsin(1/11*sqrt(22)*sqrt(5*x + 3))) + 243/2000*sqrt(5)*(2*(20*x - 23)*sqrt(5*x + 3)*sqrt(-
10*x + 5) - 143*sqrt(2)*arcsin(1/11*sqrt(22)*sqrt(5*x + 3))) + 27/25*sqrt(5)*(11*sqrt(2)*arcsin(1/11*sqrt(22)*
sqrt(5*x + 3)) + 2*sqrt(5*x + 3)*sqrt(-10*x + 5))

________________________________________________________________________________________

maple [A]  time = 0.01, size = 138, normalized size = 0.86 \begin {gather*} \frac {\sqrt {-2 x +1}\, \sqrt {5 x +3}\, \left (-102400000 \sqrt {-10 x^{2}-x +3}\, x^{5}-168960000 \sqrt {-10 x^{2}-x +3}\, x^{4}-29120000 \sqrt {-10 x^{2}-x +3}\, x^{3}+84771200 \sqrt {-10 x^{2}-x +3}\, x^{2}+44498000 \sqrt {-10 x^{2}-x +3}\, x +8213601 \sqrt {10}\, \arcsin \left (\frac {20 x}{11}+\frac {1}{11}\right )-11107980 \sqrt {-10 x^{2}-x +3}\right )}{4096000 \sqrt {-10 x^{2}-x +3}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-2*x+1)^(3/2)*(3*x+2)*(5*x+3)^(5/2),x)

[Out]

1/4096000*(-2*x+1)^(1/2)*(5*x+3)^(1/2)*(-102400000*(-10*x^2-x+3)^(1/2)*x^5-168960000*(-10*x^2-x+3)^(1/2)*x^4-2
9120000*(-10*x^2-x+3)^(1/2)*x^3+84771200*(-10*x^2-x+3)^(1/2)*x^2+8213601*10^(1/2)*arcsin(20/11*x+1/11)+4449800
0*(-10*x^2-x+3)^(1/2)*x-11107980*(-10*x^2-x+3)^(1/2))/(-10*x^2-x+3)^(1/2)

________________________________________________________________________________________

maxima [A]  time = 1.42, size = 99, normalized size = 0.62 \begin {gather*} -\frac {1}{4} \, {\left (-10 \, x^{2} - x + 3\right )}^{\frac {5}{2}} x - \frac {29}{80} \, {\left (-10 \, x^{2} - x + 3\right )}^{\frac {5}{2}} + \frac {187}{128} \, {\left (-10 \, x^{2} - x + 3\right )}^{\frac {3}{2}} x + \frac {187}{2560} \, {\left (-10 \, x^{2} - x + 3\right )}^{\frac {3}{2}} + \frac {67881}{10240} \, \sqrt {-10 \, x^{2} - x + 3} x - \frac {8213601}{4096000} \, \sqrt {10} \arcsin \left (-\frac {20}{11} \, x - \frac {1}{11}\right ) + \frac {67881}{204800} \, \sqrt {-10 \, x^{2} - x + 3} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(3/2)*(2+3*x)*(3+5*x)^(5/2),x, algorithm="maxima")

[Out]

-1/4*(-10*x^2 - x + 3)^(5/2)*x - 29/80*(-10*x^2 - x + 3)^(5/2) + 187/128*(-10*x^2 - x + 3)^(3/2)*x + 187/2560*
(-10*x^2 - x + 3)^(3/2) + 67881/10240*sqrt(-10*x^2 - x + 3)*x - 8213601/4096000*sqrt(10)*arcsin(-20/11*x - 1/1
1) + 67881/204800*sqrt(-10*x^2 - x + 3)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int {\left (1-2\,x\right )}^{3/2}\,\left (3\,x+2\right )\,{\left (5\,x+3\right )}^{5/2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1 - 2*x)^(3/2)*(3*x + 2)*(5*x + 3)^(5/2),x)

[Out]

int((1 - 2*x)^(3/2)*(3*x + 2)*(5*x + 3)^(5/2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)**(3/2)*(2+3*x)*(3+5*x)**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________